联系方式
APF并联有源电力滤波装置

电能质量优化

利用Fluke 87V数字多用表测量调速马达
来源:电能质量优化
发布时间:2024-07-15 03:47:06

  在过去,马达的维修一般是指处理传统的三相马达故障,这些故障主要是由进水、灰尘、油脂、轴承损坏、马达轴心偏离,或者仅仅是由正常老化造成的。但是,随着电子马达的使用,马达的维修已发生了很大变化,更多的是对调速马达驱动(ASD)做维修。这些驱动有许多特殊的测量问题,就连经验比较丰富的专家也会对此感到头疼。

  随着新技术的涌现,现在已能在第一次安装和维护驱动期间利用数字多用表对其进行精确的电气测量,并诊断损坏的元器件以及其他可能会引起早期故障的因素。

  技术人员会采用许多不同的方法来诊断电路故障,缩短排障时间的技巧就在于快速地跟踪故障,并将因此造成的停机时间降至最低。最有效的排障程序是首先从马达开始,然后顺藤摸瓜一直到电源电路,首先查找最明显的问题。对于连接松动导致的故障,则要换掉工况良好的器件。

  选择正确的测试工具来进行驱动、马达和和连接的排障是至关重要的,尤其是在测量马达驱动输出信号的电压、频率和电流时。福禄克新型的Fluke87V数字多用表集成有可选的低通滤波器,可以精确地测量驱动的输出信号,其测试结果和马达驱动控制器的显示保持一致。技术人员再不必猜测驱动是否工作正常,直接可测得给定的控制设备的电压、电流或频率的准确值。

  任何高质量的真有效值多用表均可测量输入到ASD的功率。在不带负载测量相-相电压时,输入电压读数的准确度应该在2%范围以内。明显的负载失衡会导致马达工作异常,一经发现,应立即纠正。

  反过来说,由于ASD向马达端子上输出的是脉宽调制(PWM)的非正弦电压信号,所以一般的真有效值多用表不能可靠地测量脉宽调制(PWM)马达驱动输出端的信号。一般的真有效值数字多用表测得的是加到马达上的非正弦信号的热效应值,而马达控制器的输出电压读数仅显示基波成分(一般从30~60Hz)的真有效值。

  产生这种矛盾的原因就在于带宽和屏蔽。现在许多真有效值数字多用表的带宽达20kHz或更宽,使其不但能够响应基波成分(这是马达真正响应的成分),而且会响应脉宽调制驱动产生的高频成分,并且如果数字多用表没有屏蔽掉高频噪声的话,驱动控制器的高频噪声电平就会造成测量结果的更大偏差。就是采取了带宽和屏蔽措施,许多真有效值多用表所显示的读数仍然会比驱动控制器所显示的值高出20%~30%。

  福禄克的新型87V多用表采用了可选的低通滤波器,在排障时,可在驱动本身或马达端子上精确测量驱动输出侧的电压、电流和频率。利用滤波器,87V多用表读出的电压和频率(马达速率)应该和相关联的驱动控制显示屏的显示(如果有的话)相一致。当驱动没有显示屏可供观察时,在马达的位置做这些测量是很有用的。

  在进行任何电气测量之前,应该掌握相关的安全知识。若使用不当,任何仪器都不能够确保绝对安全,并且许多设备根本就不适合测量调速马达。另外,在特殊的工作环境和进行特殊的测量时还要使用必要的个人防护用品。如果可能的话,最好还是不要一个人单独工作。

  美国国家标准协会(ANSI)和国际电工委员会(IEC)是为测试设备制造商定义安全标准的主要独立机构。IEC 61010标准第二版为测试设备的安全规定了两个基本信息参数:标称电压和测量种类级别,标称电压是设备可以有效的进行测量的最大连续工作电压,种类级别描述了给定种类的测量环境。大多数三相ASD装置应该被认为属于CAT III类测量环境,使用480V或600V配电系统提供电源。在使用数字多用表对这些高能系统做测量时,应确保其至少满足CAT III 600V的要求,最好满足CAT IV 600V/CAT III 1000V的要求。种类级别和电压极限一般会在前面板的输入端子上查到。新型的Fluke 87V同时满足CAT IV 600V 和CAT III 1000V的要求,可确保操作人的人身安全。

  以下的测量程序都是针对利用87V多用表在控制板的端子板上测量480V的三相驱动装置而设计的。这些程序同样适用于由单相或三相电源供电的较低电压的三相驱动。在进行这些测试时,马达运行于50Hz的频率下。

  在测量输入电流时一般都需要一个电流钳附件。在大多数情况下,不是输入电流大于87V多用表可测量的最大电流,就是不能够“断开电路”进行串联地测量电流。无论电流钳属于哪种类型,要确保所有读数之间的差异不超过3%,以保证适当的平衡。

  (3)依次用电流钳夹住每一输入电源的相线,并记录各自的读数。由于这些电流钳在每1A的电流下输出1mA的电流,所以87V多用表上显示的毫安读数值即为以安培为单位的实际相电流值。

  (3)按下黄色的按钮,使用低通滤波器。这样,多用表即可抑制驱动控制器产生的所有高频噪声。一旦使用了低通滤波器,多用表即处于600mV手动量程模式下;

  (4)依次用电流钳夹住每一输入电源的相线,并记录各自的读数。由于这些电流钳在每1A的电流下输出1mV的电压,所以多用表上显示的毫伏读数值即为以安培为单位的实际相电流值。

  (1)将黑色测试线插入到公共插孔,红色测试线插入到V/插孔;

  (3)将黑色探头连接至其中一个三相输出电压或马达端子,该端将作为参考相;

  (6)保留黑色探头不动,将红色探头连接至第三相输出电压或马达端子,记录读数;

  (7)确保这两个读数之差不超过2%,参见图3。读数应该和控制器显示屏(如果有的线)如果不使用低通滤波器,多用表测得的输出电压读数将会高出10%~30%,和普通的数字多用表测量结果一样,参见图4。